Properties off
 Artinim If Irumetions

Copy from Lang, Algebraic Number Theory

1) $\mathbf{L}(\mathbf{u}, \mathbf{1}, \mathbf{Y} / \mathbf{X})=\zeta(\mathbf{u}, \mathbf{X})$
$=$ Ihara zeta function of \mathbf{X}
(our analogue of the Dedekind zeta function, also Selberg zeta function)
2)

$$
\zeta(u, Y)=\prod_{\rho \in \hat{G}} L(u, \rho, Y / X)^{d_{\rho}}
$$

product over all irred. reps of \mathbf{G},
$d_{\rho}=$ degree ρ
3) You can prove $\zeta(\mathbf{u}, \mathbf{X})^{-1}$ divides $\zeta(\mathbf{u}, \mathbf{Y})^{-1}$ directly and you don't need to assume Y/X Galois.

Thus the analog of the Dedekind conjecture for zetas of algebraic number fields is proved easily for graph zetas.

Ihara Theorem for LL=Fumctions

$L(u, \rho, Y / X)^{-1}$
$=\left(1-u^{2}\right)^{(r-1) d_{\rho}} \operatorname{det}\left(I^{\prime}-A_{\rho}^{\prime} u+Q^{\prime} u^{2}\right)$
$r=$ rank fundamental group of $\mathrm{X}=|\mathrm{E}|-|\mathrm{V}|+\mathbf{1}$ $\rho=\operatorname{representation~of~} \mathbf{G}=\mathbf{G a l}(\mathbf{Y} / \mathbf{X}), \mathbf{d}=\mathbf{d}_{\rho}=$ degree ρ

Definitions. nd \times nd matrices $\mathbf{A}^{\prime}, \mathbf{Q}^{\prime}, \mathbf{I}^{\prime}, \mathbf{n}=|\mathbf{X}|$ nxn matrix $A(g), \mathbf{g} \in \mathbf{G a l}(\mathbf{Y} / \mathbf{X})$, has entry for $\alpha, \beta \in X$ given by $(\mathbf{A}(\mathrm{g}))_{\alpha, \beta}=\#$ \{ edges in Y from (α, e) to $\left.(\beta, \mathrm{g})\right\}$ Here e=identity of \mathbf{G}.

$$
A_{\rho}^{\prime}=\sum_{g \in G} A(g) \otimes \rho(g)
$$

$Q=$ diagonal matrix, jth diagonal entry $=q_{j}=($ degree of j th vertex in $X)-1$,
$\mathbf{Q}^{\prime}=\mathbf{Q} \otimes \mathbf{I}_{\mathrm{d}}$,
$\mathbf{I}^{\prime}=\mathbf{I}_{\mathrm{nd}}=$ identity matrix.

Proof can be found in Stark and Terras, Advances in Math., Vol. 154 (2000)

NOTES FOR REGULAR GRAPHS mostly

Another proof uses Selberg trace formula on tree to prove Ihara's theorem. For case of trivial representation, see A.T., Fourier Analysis on Finite Groups \& Applics; for general case, see and Venkov \& Nikitin, St. Petersberg Math. J., 5 (1994)
$4\left(\frac{1}{\zeta_{X}}\right)^{(r)}(0)=(-1)^{r+1} 2^{r}(r-1) \kappa(X)$, where $\kappa(X)=$ the number of spanning trees of \mathbf{X}, the complexity

Ihara zeta has functional equations relating value at \mathbf{u} and $\mathbf{1 / (q u) , ~} \mathbf{q}=$ degree - $\mathbf{1}$

Riemann Hypothesis, for case of trivial representation (poles), means graph is Ramanujan i.e., non-trivial spectrum of adjacency matrix is contained in the spectrum for the universal covering tree which is the interval ($-2 \sqrt{ } \mathbf{q}, 2 \sqrt{ }$) [see Lubotzky, Phillips \& Sarnak, Combinatorica, 8 (1988)]

RH is true for most graphs but it can be false
*Hashimoto [Adv. Stud. Pure Math., 15 (1989)] proves Ihara ζ for certain graphs is essentially the ζ function of a Shimura curve over a finite field

The Prime Number Theorem

\& Let $\pi_{\mathrm{x}}(\mathrm{m})$ denote the number of prime path equivalence classes [C] in X where the length of C is \mathbf{m}. Assume \mathbf{X} is finite connected ($\mathbf{q}+1$)-regular. Since $1 / q$ is the absolute value of the closest pole(s) of $\zeta(u, X)$ to 0 , then

$$
\pi_{\mathbf{x}}(\mathbf{m}) \sim \mathbf{q}^{\mathbf{m} / \mathbf{m} \text { as } \mathbf{m} \rightarrow \infty ~}
$$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& The proof comes from the method of generating functions (See Wilf, generatingfunctionology) and the fact that (as in Stark \& Terras, Advances in Math, 121 \& 154):

$$
u \frac{d}{d u} \log \zeta(u, X)=\sum_{m=1}^{\infty} n_{X}(m) u^{m}
$$

Here $n_{X}(m)$ is the number of closed paths C in X of length m without backtracking or tails.
 Note: When X is not regular, we could define q to be the reciprocal of the absolute value of the closest pole(s) of zeta to 0 .

EXAMPLE 1. $Y=$ cube, $X=$ tetrahedron

$$
|\mathrm{X}|=4, \quad|\mathrm{Y}|=8, \quad \mathbf{r}=3, \quad \mathbf{G}=\{\mathrm{e}, \mathrm{~g}\}
$$

representations of G are 1 and $\rho: \rho(\mathbf{e})=1, \rho(\mathbf{g})=-1$

$$
\mathbf{I}^{\prime}=\mathbf{I}_{\mathbf{4}}, \mathbf{Q}^{\prime}=\mathbf{2} \mathbf{I}_{\mathbf{4}},
$$

$A(e)_{u, v}=\#\left\{\right.$ length 1 paths \mathbf{u}^{\prime} to \mathbf{v}^{\prime} in $\left.\mathbf{Y}\right\}$
$A(g)_{u, v}=\#\left\{\right.$ length 1 paths u^{\prime} to $v^{\prime \prime}$ in $\left.Y\right\}$

$$
A(e)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad A(g)=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

$\mathrm{A}^{\prime}{ }_{1}=\mathbf{A}=$ adjacency matrix of \mathbf{X}

$$
A_{\rho}^{\prime}=A(e)-A(g)=\left(\begin{array}{cccc}
0 & 1 & -1 & -1 \\
1 & 0 & 1 & 1 \\
-1 & 1 & 0 & -1 \\
-1 & 1 & -1 & 0
\end{array}\right)
$$

Ieta and L－Functions of Cube Tetrahedron

类 $\zeta(\mathbf{u}, \mathbf{Y})^{-1}=\mathbf{L}(\mathbf{u}, \rho, \mathbf{Y} / \mathbf{X})^{-1} \zeta(\mathbf{u}, \mathbf{X})^{-1}$
测 $\mathrm{L}(\mathrm{u}, \rho, \mathrm{Y} / \mathrm{X})^{-1}=\left(1-\mathrm{u}^{2}\right)(1+\mathrm{u})(1+2 \mathrm{u})\left(1-u+2 \mathrm{u}^{2}\right)^{3}$
资 $\zeta(u, X)^{-1}=\left(1-u^{2}\right)^{2}(1-u)(1-2 u)\left(1+u+2 u^{2}\right)^{3}$
准 roots of $\zeta(\mathbf{u}, \mathbf{X})^{-1}$ are $1,1,1,1 / 2, \mathbf{r}, \mathbf{r}, \mathbf{r}$
where $r=(-1 \pm \sqrt{ }-7) / 4$ and $|r|=1 / \sqrt{ } 2$
＊The pole of $\zeta(\mathbf{u}, \mathrm{X})$ closest to 0 governs the prime number theorem discussed a few pages back．It is $\mathbf{1 / q = 1 / 2}$ ．The coefficients of the following generating function are the numbers of closed paths without backtracking or tails of the indicated length

$$
u \frac{d}{d u} \log \zeta(u, X)=24 u^{3}+24 u^{4}+96 u^{6}+168 u^{7}+168 u^{8}+528 u^{9}+1200 u^{10}+1848 u^{11}+O\left(u^{12}\right)
$$

So there are 8 primes of length $\mathbf{3}$ in X ，for example．

$$
\begin{gathered}
G=S_{3}, H=\{(1),(23)\} \text { fixes } Y_{3} \cdot a^{(1)}=(a,(1)), a^{(2)}=(a,(13)), a^{(3)}=(a,(132), \\
a^{(4)}=(a,(23)), a^{(5)}=(a,(123)), a^{(6)}=(a,(23))
\end{gathered}
$$

Here we use the standard cycle notation for elements of the symmetric group.

3 classes of primes

 in base graph X from preceding
page

* Class C1 path in X (list vertices) 14312412431
$f=1, g=3 \quad 3$ lifts to Y_{3}
1'4'3"'1"2"'4"1"2"4"'3'1'
1"4"3"1"2"4"'1"2"'4"3"1"
$1^{\prime \prime \prime} 4^{\prime \prime \prime} 3^{\prime} 1^{\prime} 2^{\prime} 4^{\prime} 1^{\prime}$ ' $^{\prime} 4^{\prime} 3^{\prime \prime \prime} 1^{\prime \prime \prime}$
Frobenius trivial \Rightarrow density $1 / 6$
* Class C2 path in X (list vertices) 1241 2 lifts to Y_{3}
1'2'4'1' $\quad f=1$
1"2"4"'1"2"'4"1" f=2
Frobenius order $2 \Rightarrow$ density $1 / 2$
* Class C3 path in X (list vertices)

12431
$f=3 \quad 1$ lift to Y_{3}
1'2'4'3""1"'2"'4"3"1"2"4"'3'1'
Frobenius order $3 \Rightarrow$ density $1 / 3$

($\zeta(\mathrm{u}, \mathrm{X})^{-1}=\left(1-\mathrm{u}^{2}\right)(1-u)\left(1+\mathbf{u}^{2}\right)\left(1+u+2 u^{2}\right)\left(1-u^{2}-2 u^{3}\right)$

$$
\begin{aligned}
& \zeta\left(\mathbf{u}, \mathbf{Y}_{3}\right)^{-1}=\zeta(\mathbf{u}, \mathbf{X})^{-1}\left(1-\mathbf{u}^{2}\right)^{2}\left(1-\mathbf{u}-\mathbf{u}^{3}+2 \mathbf{u}^{4}\right) \\
& \times\left(1-\mathbf{u}+2 \mathbf{u}^{2}-\mathbf{u}^{3}+2 \mathbf{u}^{4}\right)\left(1+\mathbf{u}+\mathbf{u}^{3}+2 \mathbf{u}^{4}\right) \\
& \times\left(\mathbf{1}+\mathbf{u}+2 \mathbf{u}^{2}+\mathbf{u}^{3}+2 \mathbf{u}^{4}\right)
\end{aligned}
$$

$\zeta\left(\mathbf{u}, \mathbf{Y}_{6}\right)^{-1}=\zeta\left(\mathbf{u}, \mathbf{Y}_{3}\right)^{-1}\left(1-\mathbf{u}^{2}\right)^{8}(1+\mathbf{u})\left(1+\mathbf{u}^{2}\right)\left(1-u+2 \mathbf{u}^{2}\right)$

$$
\begin{aligned}
& \times\left(1-u^{2}+2 u^{3}\right)\left(1-u-u^{3}+2 u^{4}\right)\left(1-u+2 u^{2}-u^{3}+2 u^{4}\right) \\
& \times\left(1+u+u^{3}+2 u^{4}\right)\left(1+u+2 u^{2}+u^{3}+2 u^{4}\right)
\end{aligned}
$$

It follows that, as in the number theory analog,

$$
\zeta(\mathbf{u}, \mathbf{X})^{2} \zeta\left(\mathbf{u}, \mathbf{Y}_{6}\right)=\zeta\left(\mathbf{u}, \mathbf{Y}_{2}\right) \zeta\left(\mathbf{u}, \mathbf{Y}_{3}\right)^{2}
$$

Here Y_{2} is an intermediate quadratic extension between Y_{6} and X. See Stark and Terras, Adv. in Math., 154 (2000), Figure 13, for a discussion.

The poles of $\zeta(\mathbf{u}, \mathbf{X})$ are $\mathbf{u}=\mathbf{1 , 1 , - 1 ,} \mathbf{i},(-1 \pm \sqrt{7} \mathbf{i} / 4, \mathbf{w}, \mathbf{w}, \mathbf{1} / \mathbf{q}$ Where $\mathbf{w , 1 / q}$ are roots of the cubic. The closest pole to 0 is $\mathbf{1 / q}$. And q is approximately $\mathbf{1 . 5 2 1 4}$. So the prime number theorem gives a considerably smaller main term, q^{m} / m, for this graph X than for $\mathbf{K}_{\mathbf{4}}$, where $\mathbf{q}=\mathbf{2}$.

Orient the edges of the graph. Multiedge matrix \mathbf{W} has ab entry $w(a, b)=w_{a b}$ in C, if the edges a and b look like

a b

Otherwise set $w_{a b}=0 \quad$ Define for closed path $C=a_{1} a_{2} \ldots a_{s}$,

$$
\mathbf{N}_{E}(C)=w\left(\mathbf{a}_{s}, \mathbf{a}_{1}\right) w\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right) \ldots w\left(\mathbf{a}_{s-1}, \mathbf{a}_{s}\right)
$$

$$
L_{E}(W, \rho, Y / X)=\prod_{[C]}\left(1-\rho\left(\frac{Y / X}{D}\right) N_{E}(C)\right)^{-1}
$$

where the product is over primes [C] of X and [D] is any prime of Y over [C]

Properties

$>\mathrm{L}_{\mathrm{E}}(\mathrm{W}, 1, \mathrm{Y} / \mathrm{X})=\zeta_{\mathrm{E}}(\mathbf{W}, \mathrm{X})$, the edge zeta function
$>\mathrm{L}_{\mathrm{E}}(\mathbf{W}, \rho)^{-1}=\operatorname{det}\left(\mathrm{I}-\mathbf{W}_{\rho}\right)$, where \mathbf{W}_{ρ} is a $2|\mathrm{E}| \mathbf{x} 2|\mathrm{E}|$ block matrix with ij block given by $\left(\mathrm{w}_{\mathrm{ij}} \rho\left(\operatorname{Frob}\left(\mathrm{e}_{\mathrm{i}}\right)\right)\right.$
$>$ Induction property
> Factorization of edge zeta as a product of edge Lfunctions
$>$ specialize all wij=u and get the Artin-Ihara vertex L function

EXAMPLE.

X=Dumbbell Graph and Fission of an Edge

Here b and e are the vertical edges.
Specialize all variables with b and e to be 0 and get zeta function of subgraph with vertical edge removed - Fision This gives the graph with just 2 disconnected loops.

Example 3 culb Covering Dumblell

Y=Cube $a^{(3)}$

$a^{(4)}$

X=Dumbbell

$\operatorname{Gal}(\mathrm{Y} / \mathrm{X})=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\} \approx \mathrm{Z} / 4 \mathrm{Z}$. Identification sends $\quad \sigma_{j}$ to $\mathrm{j}-1(\bmod 4)$
The representations are 1 -dimensional: $\pi_{\mathrm{a}}(\mathrm{b})=\mathrm{i}^{\mathrm{a}(\mathrm{b}-1)}$. Galois group elements associated to edges $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are $\operatorname{Frob}(a)=\sigma_{2}, \quad \operatorname{Frob}(b)=\sigma_{1}, \quad \operatorname{Frob}(c)=\sigma_{2}$.

Edge LFFunctions for Exanple 3.

$$
\zeta(W, X)^{-1}=L(W, 1, Y / X)^{-1}=\operatorname{det}\left(\begin{array}{cccccc}
w_{c a}-1 & w_{a b} & 0 & 0 & 0 & 0 \\
0 & -1 & w_{b c} & 0 & 0 & w_{b f} \\
0 & 0 & w_{c c}-1 & 0 & w_{c e} & 0 \\
0 & w_{d b} & 0 & w_{d d}-1 & 0 & 0 \\
w_{c a} & 0 & 0 & w_{e d} & -1 & 0 \\
0 & 0 & 0 & 0 & w_{f e} & w_{f f}-1
\end{array}\right)
$$

$$
L_{E}\left(W, \pi_{1}, Y / X\right)^{-1}=\operatorname{det}\left(\begin{array}{cccccc}
i w_{c a}-1 & i w_{a b} & 0 & 0 & 0 & 0 \\
0 & -1 & w_{b c} & 0 & 0 & w_{b f} \\
0 & 0 & i w_{c}-1 & 0 & i w_{c e} & 0 \\
0 & -i w_{d b} & 0 & -i w_{d d}-1 & 0 & 0 \\
w_{e a} & 0 & 0 & w_{c d} & -1 & 0 \\
0 & 0 & 0 & 0 & -i w_{f e} & -i w_{f f}-1
\end{array}\right)
$$

$$
L\left(W, \pi_{2}, Y / X\right)^{-1}=\operatorname{det}\left(\begin{array}{cccccc}
-w_{a a}-1 & -w_{c b} & 0 & 0 & 0 & 0 \\
0 & -1 & w_{b c} & 0 & 0 & w_{b f} \\
0 & 0 & -w_{c}-1 & 0 & -w_{c e} & 0 \\
0 & -w_{d b} & 0 & -w_{d d}-1 & 0 & 0 \\
w_{e a} & 0 & 0 & w_{e d} & -1 & 0 \\
0 & 0 & 0 & 0 & -w_{f e} & -w_{f f}-1
\end{array}\right)
$$

$$
L\left(W, \pi_{3}, Y / X\right)^{-1}=\operatorname{det}\left(\begin{array}{cccccc}
-i w_{a a}-1 & -i w_{a b} & 0 & 0 & 0 & 0 \\
0 & -1 & w_{b c} & 0 & 0 & w_{b f} \\
0 & 0 & -i w_{c c}-1 & 0 & -i w_{c e} & 0 \\
0 & i w_{d b} & 0 & i w_{d d}-1 & 0 & 0 \\
w_{e a} & 0 & 0 & w_{e d} & -1 & 0 \\
0 & 0 & 0 & 0 & i w_{f e} & i w_{f f}-1
\end{array}\right)
$$

Note that the product of these 6×6 determinants is the 24×24 determinant whose reciprocal is the multiedge zeta function of Y , the cube.

Pog tin Lexnctions

Here we discuss a new kind of L-function with smaller sized matrix determinants.

Fundamental Group of X can be identified with group generated by edges left out of a spanning tree

$$
e_{1}, \ldots e_{r}, e_{1}^{-1}, \ldots, e_{r}^{-1}
$$

$2 \mathrm{r} \times 2 \mathrm{r}$ multipath matrix Z has ij entry
z_{ij} in C if $e_{j} \neq e_{i}^{-1}$ and $\mathrm{Z}_{\mathrm{ij}}=0$, otherwise.

Imitate the definition of the edge Artin L-functions.
Write a prime path as a reduced word in a conjugacy class

$$
C=a_{1} \cdots a_{s} \text {, where } a_{j} \in\left\{e_{1}^{ \pm 1}, \ldots, e_{r}^{ \pm 1}\right\}
$$

and define the path norm

$$
\begin{gathered}
N_{P}(C)=z\left(a_{s}, a_{1}\right) \prod_{i=1}^{s-1} z\left(a_{i}, a_{i+1}\right) \\
\quad \text { where } \mathrm{z}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)=\mathrm{z}_{\mathrm{ij}} .
\end{gathered}
$$

Define the path zeta L-function

$$
L_{P}(Z, \pi, Y / X)=\prod_{[C]} \operatorname{det}\left(1-\pi\left(\frac{Y / X}{D}\right) N_{P}(C)\right)^{-1}
$$

Product is over prime cycles [C] in X
[D] is any prime of Y over [C]

The path L－functions have analogous properties to the edge L－functions．
类 They are reciprocals of polynomials．
类 They provide factorizations of the path zeta functions．法 The most important property is that of

Specialization to Path L－functions．

$>$ edges left out of a spanning tree T of $\mathrm{X}: \quad e_{1}, \ldots e_{r}$ generate fundamental group of X
$>$ inverse edges are $e_{r+1}=e_{1}^{-1}, \ldots, e_{2 r}=e_{r}^{-1}$
$>$ edges of the spanning tree T are $t_{1}, \ldots, t_{|X|-1}$
$>$ with inverse edges $t_{|X|}, \ldots t_{2|X|-2}$
If $e_{i} \neq e_{j}^{-1}$ ，write the part of the path between e_{i} and e_{j} as the（unique）product $t_{k_{1}} \cdots t_{k_{n}}$
C is 1 st a product of e_{j}（generators of the fundamental group），then a product of actual edges e_{j} and t_{k} ． Specialize the multipath matrix Z to $\mathrm{Z}(\mathrm{W})$ with entries

$$
z_{i j}=w\left(e_{i}, t_{k_{1}}\right) w\left(t_{k_{n}}, e_{j}\right) \prod_{v=1}^{n-1} w\left(t_{k_{k}}, t_{k_{k+1}}\right)
$$

Then

$$
L_{P}(Z(W), X)=L_{E}(W, X)
$$

Example - the Dumbbell

Recall the edge zeta
was a 6×6 determinant.
The specialized path zeta is only $4 x 4$.
Maple computes it much faster than the
 6×6.

$$
\zeta_{E}(W, X)^{-1}=\operatorname{det}\left(\begin{array}{cccc}
w_{a a}-1 & w_{a b} w_{b c} & 0 & w_{a b} w_{b f} \\
w_{c e} w_{e a} & w_{c c}-1 & w_{c e} w_{e d} & 0 \\
0 & w_{d b} w_{b c} & w_{d d}-1 & w_{d b} w_{b f} \\
w_{f e} w_{e a} & 0 & w_{f e} w_{e d} & w_{f f}-1
\end{array}\right)
$$

Fusion of an edge is now easy to do in the path zeta.

To obtain edge zeta of graph obtained from dumbbell graph, by fusing edges b and e,

Replace $\mathbf{w}_{\mathbf{x b}} \mathbf{W}_{\text {by }}$ with $\mathbf{w}_{\mathbf{x y}}$ Replace $\mathbf{w}_{\mathrm{xe}} \mathbf{W}_{\mathrm{ey}}$ with \mathbf{w}_{xy}

Application of Galois Theory of Graph

 Coverings. You can't hear the shape of a graph.Find 2 regular graphs (without loops and multiple edges) which are isospectral but not isomorphic.

See A.T. \& Stark in Adv. in Math., Vol. 154 (2000) for the details. The method goes back to algebraic number theorists who found number fields K_{i} which are non isomorphic but have the same Dedekind zeta. See Perlis, J. Number Theory, 9 (1977).

