
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 

Copy from Lang, Algebraic Number Theory 
 

1)  L(u,1,Y/X)  =  ζ(u,X) 
    =  Ihara zeta function of X  
    (our analogue of the Dedekind zeta   
     function, also Selberg zeta function) 
 
 

2)  

µ
( , ) ( , , / )d

G

u Y L u Y X ρ

ρ

ζ ρ
∈

= ∏
 

    product over all irred. reps of G, 
dρ=degree ρ 

3) You can prove  ζ (u,X)-1 divides ζ(u,Y)-1 

    directly and you don't need to assume   
    Y/X Galois. 
 
Thus the analog of the Dedekind 
conjecture  for zetas of algebraic number 
fields is proved easily for graph zetas. 
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( 1)2 2

( , , / )

(1 ) det( ' ' ' )r d

L u Y X

u I A u Q uρ

ρ

ρ −

−= − − +
 r=rank fundamental group of X = |E|-|V|+1 

ρ= representation of G = Gal(Y/X), d = dρ = degree ρ 

       Definitions.   nd×nd matrices A′, Q′, I′,  n=|X| 

    nxn matrix A(g), g ∈ Gal(Y/X),   
             has entry for α,β∈X  given by 

     (A(g))α,β = # { edges in Y from (α,e) to (β,g) } 
Here e=identity of G.  
' ( ) ( )

g G

A A g gρ ρ
∈

= ⊗∑  

Q = diagonal matrix, jth diagonal entry  
= qj = (degree of jth vertex in X)-1, 

Q′ = Q⊗Id ,               I′ = Ind =  identity matrix. 
 

Proof can be found in Stark and Terras, Advances in 
Math., Vol. 154 (2000) 
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NOTES FOR REGULAR GRAPHS mostly 

Another proof uses Selberg trace formula on tree to 
prove Ihara’s theorem.  For case of trivial 
representation, see A.T., Fourier Analysis on Finite 
Groups & Applics; for general case, see and Venkov 
& Nikitin, St. Petersberg Math. J., 5 (1994) 

 
( )

11
(0) ( 1) 2 ( 1) ( )

r

r r

X

r Xκ
ζ

+ 
= − − 

 
, where κ(X)=the number 

of spanning trees of X, the complexity 
 

Ihara zeta has functional equations relating value at 
u and 1/(qu),  q=degree - 1  

 

Riemann Hypothesis, for case of trivial 
representation (poles), means graph is Ramanujan  
i.e., non-trivial spectrum of adjacency matrix is 
contained in the spectrum for the universal covering 
tree which is the interval (-2√q, 2√q) [see Lubotzky, 
Phillips & Sarnak, Combinatorica, 8 (1988)] 

 

RH is true for most graphs but it can be false 
 

Hashimoto [Adv. Stud. Pure Math., 15 (1989)] 
proves Ihara ζ for certain graphs is essentially the ζ 
function of a Shimura curve over a finite field  
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The Prime Number Theorem 
zzzzzzzzzzzzzzzzzzzzzzz 
Let πX(m) denote the number of prime path 
equivalence classes [C] in X where the length of C 
is m. Assume X is finite connected (q+1)-regular. 
Since 1/q is the absolute value of the closest 
pole(s) of ζ(u,X) to 0, then 

πX(m) ∼   qm/m  as m →∞. 
zzzzzzzzzzzzzzzzzzzzzzz 

The proof comes from the method of generating 
functions (See Wilf, generatingfunctionology) and 
the fact that (as in Stark & Terras, Advances in 
Math, 121 & 154): 

1

log ( , ) ( ) m
X

m

d
u u X n m u

du
ζ

∞

=

= ∑  
Here nX(m) is the number of closed paths C in X 
of length m without backtracking or tails.   
zzzzzzzzzzzzzzzzzzzzzzz 

Note: When X is not regular, we could define q to 
be the reciprocal of the absolute value of the 
closest pole(s) of zeta to 0. 
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EXAMPLE 1.    Y=cube,  X=tetrahedron 

 
|X| =4,      |Y| = 8,     r=3,   G = {e,g} 

 
  representations of G are 1 and ρ:   ρ(e) = 1,  ρ(g) = -1   

I′ = I4,  Q′ = 2I4, 

A(e)u,v =  #{ length 1 paths u′ to v′ in Y} 

A(g)u,v =  #{ length 1 paths u′ to v′′ in Y} 
 

   A′1 = A = adjacency matrix of X 

0 1 0 0 0 0 1 1
1 0 1 1 0 0 0 0

( ) ( )
0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0

A e A g

   
   
   = =
   
      
   

0 1 1 1
1 0 1 1

' ( ) ( )
1 1 0 1
1 1 1 0

A A e A gρ

− − 
 
 = − =
 − −
  − − 
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¯ ζ(u,Y)-1 = L(u,ρ,Y/X)-1 ζ(u,X)-1 
 

¯ L(u, ρ,Y/X)-1 = (1-u2) (1+u) (1+2u) (1-u+2u2)3 
 

¯ ζ(u,X)-1 = (1-u2)2(1-u)(1-2u) (1+u+2u2)3  
 

¯ roots of  ζ(u,X)-1 are 1,1,1, ½,r,r,r 
         where r=(-1±√-7)/4  and |r|=1/√2 
 

¯ The pole of ζ(u,X) closest to 0 governs the prime number 
theorem discussed a few pages back. It is 1/q=1/2.  The 
coefficients of the following generating function are the numbers 
of closed paths without backtracking or tails of the indicated 
length 

3 4 6 7 8 9 10 11 12log ( , ) 24 24 96 168 168 528 1200 1848 ( )
d

u u X u u u u u u u u O u
du

ζ = + + + + + + + +  
    So there are 8 primes of length 3 in X, for example. 

 

X 

Y 
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This example is analogous to example 2 in part 1. 

    a(x) 
 
 
 
    a 

1 

2 

4 

3 

2’ 

1’ 
4’ 

3’ 3’’’ 

1’’’ 
4’’’ 

2’’’ 

4’’ 

2’’ 

1’’ 

3’’ 

3(6) 

1(6) 2(6) 

4(6) 

4(5) 

2(5) 
1(5) 

3(5) 

3(4) 

1(4) 
4(4) 

2(4) 

4(1) 

1(1) 

2(1) 

3(1) 

3(2) 
1(2) 

4(2) 
2(2) 

4(3) 1(3) 
2(3) 

3(3) 

Y6 

Y3 

X 

x=1,2,3 
 
a(x),a(x+3) 

 

 
 
    a(x) 

G=S3,  H={(1),(23)} fixes Y3. a
(1)=(a,(1)),  a(2)=(a,(13)), a(3)=(a,(132), 

a(4)=(a,(23)),a(5)=(a,(123)),a(6)=(a,(23)) 
Here we use the standard cycle notation for elements of the symmetric group. 
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1 

2 
3 

4 

333   ccclllaaasssssseeesss   ooofff   ppprrriiimmmeeesss   
iiinnn   bbbaaassseee   gggrrraaappphhh   XXX   
fffrrrooommm   ppprrreeeccceeedddiiinnnggg   
pppaaagggeee   

 Class C1  path in X (list vertices)
      14312412431 
f=1, g=3    3 lifts to Y3 
1’4’3’’’1’’’2’’’4’’1’’2’’4’’’3’1’ 
1’’4’’3’’1’’2’’4’’’1’’’2’’’4’’3’’1’’ 
1’’’4’’’3’1’2’4’1’2’4’3’’’1’’’ 
Frobenius trivial  ⇒ density 1/6 

 
 Class C2 path in X (list vertices) 1241 
2 lifts to Y3 
1’2’4’1’     f=1 
1’’2’’4’’’1’’’2’’’4’’1’’  f=2 
Frobenius order 2 ⇒ density 1/2 

 
 Class C3 path in X (list vertices)
 12431 
f=3  1 lift to Y3 
1’2’4’3’’’1’’’2’’’4’’3’’1’’2’’4’’’3’1’ 
Frobenius order 3  ⇒  density 1/3 
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Ì ζ(u,X)-1=(1-u2)(1-u)(1+u2)(1+u+2u2)(1-u2-2u3) 
 
Ì ζ(u,Y3)-1=ζ(u,X)-1 (1-u2)2(1-u-u3+2u4) 

    ×(1-u+2u2-u3+2u4)(1+u+u3+2u4) 
    ×(1+u+2u2+u3+2u4) 

 
Ì ζ(u,Y6)-1=ζ(u,Y3)-1 (1-u2)8(1+u)(1+u2)(1-u+2u2) 

× (1-u2+2u3) (1-u-u3+2u4) (1-u+2u2-u3+2u4)  
× (1+u+u3+2u4)(1+u+2u2+u3+2u4) 

 
It follows that, as in the number theory analog, 

ζ(u,X)2 ζ(u,Y6) = ζ(u,Y2) ζ(u,Y3)2 
Here Y2 is an intermediate quadratic extension between 
Y6 and X.  See Stark and Terras, Adv. in Math., 154 
(2000), Figure 13, for a discussion. 
 
The poles of  ζ(u,X) are u=1,1,-1, ±i,(-1±√7i)/4,w,w,1/q 
Where w,1/q are roots of the cubic. The closest pole to 0 is 
1/q. And q is approximately 1.5214.  So the prime number 
theorem gives a considerably smaller main term, qm/m,  for 
this graph X than for K4, where q=2. 
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    a   b 
 
 
 
 
 

Otherwise set  wab=0     Define for closed path C=a1a2…as,   
 

NE(C)=w(as,a1)w(a1,a2)…w(as-1,as) 
 
 
 
 
 
 
 
 
 

Orient the edges of the graph. Multiedge matrix W  
has ab entry  w(a,b)=wab in C,  if the edges a and b look like 

 

1

[ ]

/
( , , / ) 1 ( )E E

C

Y X
L W Y X N C

D
ρ ρ

−
  = −     

∏

where the product is over primes [C] of X and [D] is any 
prime of Y over [C] 
 

Properties 
Ø  L E (W,1,Y/X)=ζE(W,X), the edge zeta function 
Ø  LE(W,ρ)-1=det(I-Wρ), where Wρ is a 2|E|x2|E|  block  
     matrix with ij block given by  (wij ρ(Frob(ei)) 
Ø  Induction property 
Ø  Factorization of edge zeta as a product of edge L-

functions 
Ø specialize all wij=u and get the Artin-Ihara vertex L 

function 
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 Example.  

X=Dumbbell Graph 
and Fission of an 
Edge 

1

1 0 0 0 0
0 1 0 0
0 0 1 0 0

( , ) det
0 0 1 0 0

0 0 1 0
0 0 0 0 1

aa ab

bc bf

cc ce
E

db dd

ea ed

fe ff

w w
w w

w w
W X

w w
w w

w w

ζ −

− 
 − 
 −

=  
− 

 −
  − 

Here b and e are the vertical edges. 
Specialize all variables with b and e to be 0 and get zeta function of 

subgraph with vertical edge removed  -  Fision 
This gives the graph with just 2 disconnected loops. 

       b         e 
  a        d 

  c        f 
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       b         e 
  a        d 

  c        f 

b' 

b" 

b(3) 
     b(4) 

a' 

c' 

a(3) 

a" a(4) 
c" 

c(3) 
     c(4) 

Y=Cube 

X=Dumbbell 

Gal(Y/X)   =   {σ1,σ 2,σ 3,σ 4}    ≈     Z/4Z. 
Identification sends      σj  to  j - 1(mod 4) 

The representations are 1-dimensional: πa(b)=ia(b-1). 
Galois group elements associated to edges a,b,c  are 

Frob(a) =  σ 2,   Frob(b) =  σ1,   Frob(c) =  σ2. 
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1 1

1 0 0 0 0
0 1 0 0

0 0 1 0 0
( , ) ( ,1, / ) det

0 0 1 0 0
0 0 1 0

0 0 0 0 1

aa ab

bc bf

cc ce

db dd

ea ed

fe ff

w w
w w

w w
W X L W Y X

w w
w w

w w

ζ − −

− 
 − 
 −

= =  
− 

 −
  − 

1
3

1 0 0 0 0
0 1 0 0
0 0 1 0 0

( , , / ) det
0 0 1 0 0

0 0 1 0
0 0 0 0 1

aa ab

bc bf

cc ce

db dd

ea ed

fe ff

iw iw
w w

iw iw
L W Y X

iw iw
w w

iw iw

π −

− − − 
 − 
 − − −

=  
− 

 −
  − 

1
1

1 0 0 0 0
0 1 0 0
0 0 1 0 0

( , , / ) det
0 0 1 0 0

0 0 1 0
0 0 0 0 1

aa ab

bc bf

cc ce
E

db dd

ea ed

fe ff

iw iw
w w

iw iw
L W Y X

iw iw
w w

iw iw

π −

− 
 − 
 −

=  
− − − 

 −
  − − − 

1
2

1 0 0 0 0
0 1 0 0
0 0 1 0 0

( , , / ) det
0 0 1 0 0

0 0 1 0
0 0 0 0 1

aa ab

bc bf

cc ce

db dd

ea ed

fe ff

w w
w w

w w
L W Y X

w w
w w

w w

π −

− − − 
 − 
 − − −

=  
− − − 

 −
  − − − 

Note that the product of these 6x6 determinants is the 24x24 
determinant whose reciprocal is the multiedge zeta function of Y, 
the cube. 



 14 

 

 
Here we discuss a new kind of L-function with smaller sized matrix 

determinants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fundamental Group of X can be identified with group 
generated by edges left out of a spanning tree 

    1 1
1 1,... , ,...,r re e e e− −  

 
2r ×2r  multipath matrix Z  has ij entry  

zij   in  C if   1
j ie e−≠   and     zij =0, otherwise. 

 
Imitate the definition of the edge Artin L-functions. 
 
Write a prime path  as a reduced word in a conjugacy class 

1 1
1 1, { , , }s j rC a a where a e e± ±= ∈L …  

and define the path norm 
1

1 1
1

( ) ( , ) ( , )
s

P s i i
i

N C z a a z a a
−

+
=

= ∏  

where z(ei,ej)=zij. 
 
Define the path zeta L-function 

1

[ ]

/
( , , / ) det 1 ( )P P

C

Y X
L Z Y X N C

D
π π

−
  = −     

∏  

Product is over prime cycles [C] in X  
[D] is any prime of Y over [C] 
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The path L-functions have analogous properties to the 
edge L-functions.  
¯They are reciprocals of polynomials.  
¯They provide factorizations of the path zeta functions. 
¯ The most important property is that of  
          Specialization to Path L-functions. 
 

Ø edges left out of a spanning tree T of X:   1 ,... re e  
             generate fundamental group of X 
Ø inverse edges are 1 1

1 1 2,...,r r re e e e− −
+ = =  

Ø edges of the spanning tree T are    1 | | 1,..., Xt t −  
Ø with inverse edges  | | 2| | 2,...X Xt t −  
 
If   1

i je e−≠ , write the part of the path between ei and ej 
as the (unique) product  1 nk kt tL  
C is 1st a product of ej (generators of the fundamental 
group), then a product of actual edges ej and tk. 
Specialize the multipath matrix Z to Z(W) with 
entries 

1 1

1

1

( , ) ( , ) ( , )
n

n

ij i k k j k kz w e t w t e w t t
ν ν

ν
+

−

=

= ∏  

Then  

( ( ), ) ( , )P EL Z W X L W X=
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Recall the edge zeta 
was a 6x6 determinant. 
The specialized path 
zeta is only 4x4. 
Maple computes it 
much faster than the 
6x6. 

 

       b         e 
  a        d 

  c        f 

1

1 0
1 0

( , ) det
0 1

0 1

aa ab bc ab bf

ce ea cc ce ed
E

db bc dd db bf

fe ea fe ed ff

w w w w w
w w w w w

W X
w w w w w

w w w w w

ζ −

− 
 − =  −
  − 

 

Fusion of an edge is now 
easy to do in the path zeta. 
 

To obtain edge zeta of graph 
obtained from dumbbell graph,  
by fusing edges b and e,   
 

Replace   wxbwby  with wxy 

Replace      wxewey    with wxy 

  a        d 
 c 
 
  f 
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Application of Galois Theory of Graph 
Coverings.  You can’t hear the shape of a graph. 
 

Find 2 regular graphs (without loops and multiple 
edges) which are isospectral but not isomorphic. 
 

See A.T. & Stark in Adv. in Math., Vol. 154 (2000)  for 
the details.  The method goes back to algebraic 
number theorists who found number fields Ki which 
are non isomorphic but have the same Dedekind zeta. 
See Perlis, J. Number Theory, 9 (1977). 



 18 

 


